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Alcohol use and abuse has many harmful effects, especially to children exposed 

prenatally, including fetal alcohol spectrum disorders (FASDs). The disabilities due to 

fetal alcohol exposure continue throughout life and cause major financial burdens to 

society. The molecular mechanisms underlying FASDs are not well understood. We 

have taken a genetic approach to characterize ethanol’s effect on changing a discrete 

cell fate decision during embryogenesis in the nematode, Caenorhabditis elegans 

(C. elegans). Our preliminary data suggest that ethanol can affect the development of 
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AWC neurons, a pair of olfactory neurons in C. elegans. We suggest that lipids can 

protect AWC neurons from ethanol’s effects. Importantly, we show that altering the 

metabolism of triacylglycerols (TAGs) can rescue this cell fate change in behavioral 

assays. By identifying molecular causes of fetal alcohol damage in humans we hope to 

be able to develop a greater understanding of how to prevent these detrimental effects.
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Chapter 1: Introduction 

 

Alcohol  

Alcohol is a widely accepted drug in today’s modern society. Alcohol abuse 

causes many detrimental socioeconomic consequences including increases in criminal 

activity, loss of employment and productivity, increases in comorbidity with other 

disorders and increases in healthcare costs that affect all social and ethnic groups. 

Even with the numerous negative consequences associated with alcohol, people 

continue to drink. This can then lead to the development of alcohol addiction. As 

described in DSM-IV, alcohol abuse is “a maladaptive pattern of drinking, leading to 

clinically significant impairment or distress, as manifested by at least one of the 

following occurring within a 12-month period: recurrent use of alcohol resulting in failure 

to fulfill major role obligations at work, school, or home, recurrent alcohol use in 

situations in which it is physically hazardous, recurrent alcohol-related legal problems, 

or continued alcohol use despite having persistent or recurrent social or interpersonal 

problems caused or exacerbated by the effects of alcohol (American Psychiatric 

Association, 1994).” Alcohol abuse can then lead to alcohol addiction with continued 

alcohol use, which is characterized by repetitive alcohol drinking patterns that leads to a 

loss of control over alcohol consumption (Moonat et al., 2010). Alcoholics suffer 

negative social consequences such as losses of a partner, friends, family and their job 

(Spanagel, 2009). Alcoholics are dependent on the drug with features including 
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excessive drinking, tolerance, withdrawal if alcohol is removed, a persistent desire for 

alcohol and impaired social, occupational, and recreational activities (DSM-IV, 1994). 

Prolonged alcohol use can also lead to organ damage of the brain, heart, liver, 

pancreas and intestines. The Central Nervous System (CNS) can be severely affected 

with sulcal widening, ventricular enlargements and amygdala, hippocampus, and white 

matter deterioration leading to deficits in memory, learning, abstraction, problem-

solving, and sleep (Schuckit, 2009; Spanagel, 2009). Chronic and heavy alcohol 

drinking can also cause increased blood pressure, high LDL (Low-Density Lipoprotein) 

cholesterol, pancreatitis, liver cirrhosis, and decreased bone density (Schuckit, 2009). 

 Additionally, alcohol abuse has a high comorbidity with other psychiatric 

disorders including anxiety, attention, and major depressive disorders and nicotine 

dependence. Studies have shown that panic disorder, bipolar disorder, antisocial 

personality disorder, posttraumatic stress disorder, and depression are all tightly linked 

to alcohol abuse (Raimo and Schuckit, 1998; Schuckit et al., 1997; Spanagel, 2009; 

Swendsen et al., 1998).  Furthermore, alcoholism, along with anxiety and depressive 

disorders, are the most common psychiatric syndromes cited in community surveys and 

pose a significant health concern (Kessler et al., 1994). Similarly alcoholism has been 

closely associated with nicotine addiction where as many as 90% of alcoholics are 

cigarette smokers which can lead to a higher incidence of head and neck cancers 

(Miller et al., 1998). Chronic alcohol use along with nicotine-use or psychiatric disorders 
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overall causes an additive effect and leads to increased mortality rates (Miller et al., 

1998). 

Molecular effects 

Ethanol is a very simple and highly diffusible molecule making it difficult to isolate 

its specific molecular mechanisms and interactions. Ethanol has two reactive sites, the 

hydroxyl group and the short carbon backbone, and poor reactivity resulting in low 

potency (Lovinger and Crabbe, 2005). Therefore, low potency allows for a wide range of 

effects of ethanol ranging from intoxication to anesthesia. Low potency also prevents 

binding studies to be conducted to identify occupancy of a specific molecular site. In 

addition, ethanol distributes into many cellular compartments and has a large range of 

physiologically significant concentrations making it difficult to study.  

 Ethanol affects many neural mechanisms, which contribute to a person’s acute 

sensitivity to alcohol, development of tolerance and dependence, and a strong desire or 

craving for alcohol. Alcohol has both direct and indirect targets that are currently being 

studied (Lovinger and Crabbe, 2005). Various studies have shown an array of proteins, 

encompassing neurotransmitter receptors, ion channels and neurotransmitter 

transporters, and processes are affected by ethanol. GABAA receptors are major targets 

for ethanol and their function has been shown to be potentiated by ethanol (Grobin et 

al., 1998). Ethanol has also been shown to increase the activity of SLO-1/BK channels. 

 SLO-1, or large conductance, voltage and calcium sensitive potassium (BK) 

channels, are essential in controlling neuronal excitability, synaptic strength and 
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plasticity and smooth muscle tone. These channels are important in regulating 

neurotransmitter release and repolarize active neurons by conducting potassium ions 

through cell membranes. SLO-1 channels are found at presynaptic nerve endings and 

are activated by membrane depolarization and calcium. BK channels have been shown 

to be activated by ethanol at clinically relevant concentrations (Dopico et al., 1996, 

1998). Additionally, BK channel subunit composition as well as the lipid environment 

surrounding BK channels has been shown to affect alcohol tolerance (Feinberg-Zadek 

et al., 2008).  

NMDA receptors, glycine receptors, neuronal nicotinic receptors, CREB proteins, 

VTA dopaminergic neurons and the mesocorticolimbic and extended amygdala circuitry 

are affected by ethanol (Harris et al., 2008; Lovinger and Crabbe, 2005; Spanagel, 

2009). Furthermore, alcohol has been implicated in effects on other enzymes and 

systems including alcohol dehydrogenase (ADH), adenylyl cyclase, the serotonin 

system, the dopamine system and the neuropeptide Y receptor (Davies et al., 2004; 

Harris et al., 2008; Lovinger and Crabbe, 2005). By having a better understanding of 

ethanol’s molecular targets, there is a greater chance of creating new and improved 

drug treatments to prevent relapse and maintain abstinence for alcoholics. 

Current treatments for alcoholism 

Currently there is no cure for alcoholism. Abstinence maintenance and 

prevention of relapse are the major goals for treatment of alcohol-dependent individuals; 

reducing the incidences of drinking can decrease alcohol-related consequences and 
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improve quality of life. FDA-approved drug treatments to enhance abstinence include 

Disulfiram (Antabuse), Naltrexone (Revia, Vivitrol), and Acamprosate (Campral) are 

used along with peer support groups to encourage and help a person’s recovery from 

alcoholism.  

Peer support groups such as Alcoholics Anonymous (AA) and Smart Recovery 

are 12-step programs to help alcoholics in their desire to stop drinking. It has been 

shown that regular weekly participation in 12-step programs are effective in maintaining 

a high rate of alcohol abstinence (Fiorentine, 1999). Also, Blonigen et al. found that 

alcoholics attending AA had decreased impulsivity associated with fewer alcohol use 

problems, increased self-efficacy, and better coping and social support after 1 and 8 

years. Another important feature of 12-step programs is that recovering alcoholics can 

help other alcoholics maintain sobriety which benefits both people involved (Pagano et 

al., 2004).  

Along with peer support groups, pharmacotherapy has been shown to be 

beneficial in alcohol abstinence. Disulfiram was first developed as a rubber vulcanizer, 

and considered as a treatment when it was discovered that rubber industry workers had 

an adverse reaction to alcohol by 1910 (Krampe and Ehrenreich, 2010). Disulfiram was 

not an FDA-approved drug used for alcoholism until the 1940s when it was found to 

inhibit the metabolism of alcohol. Two enzymes in the liver metabolize alcohol. Alcohol 

dehydrogenase first reversibly metabolizes alcohol to acetaldehyde. Acetaldehyde is 

then further broken down into acetate by aldehyde dehydrogenase. Disulfiram inhibits 
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the liver enzyme aldehyde dehydrogenase leading to an accumulation of acetaldehyde. 

Acetaldehyde build-up starts as soon as 10 minutes after alcohol consumption and can 

cause unpleasant aversive effects ranging from facial flushing, sweating and headache 

to dizziness, nausea, tachycardia, increased pulse and respiration to vomiting and 

respiratory depression (Krampe and Ehrenreich, 2010). Studies have shown that 

Disulfiram increases both abstinence and the number of days until relapse (Jørgensen 

et al., 2011; De Sousa and De Sousa, 2004, 2005, 2008; De Sousa et al., 2008; 

Laaksonen et al., 2008). 

Naltrexone is a competitive antagonist at µ-, Κ-, and δ-opioid receptors with the 

highest affinity for µ-opioid receptors (Garbutt, 2010). Alcohol affects the endogenous 

opioid system by causing the release of endorphins, which enhance dopamine signaling 

thereby triggering alcohol reinforcement and provoking a person to drink more (Anton, 

2008).  Although Naltrexone’s mechanism of action in alcoholism treatment is not fully 

understood, it is believed to block alcohol-induced release of dopamine leading to the 

reduction of stimulus and reinforcing effects of alcohol and reducing craving and loss of 

control (Sinclair, 2001). Naltrexone comes in two routes of administration, oral 

Naltrexone (Revia) or injectable Naltrexone (Vivitrol). Oral Naltrexone has been shown 

to decrease alcohol craving and relapse but the studies have been confounded by small 

sample sizes, a large variety in dosage and low levels of medication compliance (Bouza 

et al., 2004; Volpicelli et al., 1997). Intramuscular injectable Naltrexone was developed 

to maintain constant plasma levels, increase medication compliance, and increase 
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exposure to the therapeutic dose (Johnson et al., 2008). Studies have shown that high-

dose Vivitrol is efficacious in preventing heavy drinking in subjects by reducing both 

frequency and quantity of alcohol consumption (Garbutt, 2010; Johnson, 2008; Lee et 

al., 2010). 

 Acamprosate is the newest drug to be approved by the FDA for maintenance of 

abstinence in alcohol dependent patients. Acamprosate has structural similarity to the 

neurotransmitter GABA (Kennedy et al., 2010). Acamprosate has unique mechanisms 

of action that are still being elucidated. Chronic alcohol use facilitates inhibitory 

GABAergic neurotransmission and attenuates excitatory glutamatergic 

neurotransmission (De Witte et al., 2005). To compensate for this change, there is an 

increase in the number of NMDA receptors as well as an increase in their sensitivity 

(Tsai et al., 1995, 1998). Therefore, when a person goes through alcohol withdrawal 

there is an excessive increase in excitatory neurotransmitters which activate receptors 

at a higher than normal level. Acamprosate acts to normalize a hyper-glutamatergic 

state by inhibiting mGluRs and modulating NMDA receptor function thus decreasing 

neuronal hyperexcitability seen during early abstinence. (De Witte et al., 2005; Johnson, 

2008; Kiefer and Mann, 2010). Acamprosate decreases alcohol craving and relapse 

behavior, has a good safety record, has a superior compliance rate among patients, and 

is the most widely prescribed drug for the treatment of alcoholism (Bouza et al., 2004; 

Mason and Heyser, 2010). 
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 Another new drug, Topiramate, is currently being tested and has shown promise 

in being used for the treatment of alcoholism. Topiramate is an anti-epileptic medication 

that is being investigated as a treatment for alcohol dependence due to its dual ability to 

antagonize glutamate receptors and inhibit dopamine receptors, which are important in 

reward and reinforcement of alcohol use (Johnson, 2010; Olmsted et al., 2008). Clinical 

trials have shown that Topiramate reduces the number of heavy drinking days and 

increases days of continuous abstinence from alcohol (Johnson et al., 2007). The 

NIAAA Medications Development Team has recently identified three new goals for the 

advancement of alcohol treatment research. These three goals are: develop new 

approaches to make the development of alcohol-dependence medications more 

efficient, develop strategies to increase the effect size of compounds in clinical trials and 

to facilitate the use of alcohol medications in today’s clinical practice (Litten et al., 2012). 

To accomplish these three goals for alcohol treatment they have identified objectives 

such as discovering and validating new molecular targets and implementing animal and 

human laboratory research paradigms to screen new drugs to make alcohol drug 

development more efficient and improve clinical testing (Litten et al., 2012).  

Prenatal alcohol exposure 

Alcohol causes numerous negative consequences to the person drinking but can 

cause more severe brain and behavioral effects to the child of an alcoholic mother. 

Currently, prenatal alcohol exposure is the leading preventable cause of developmental 

disorders and birth defects in the United States (Bailey and Sokol, 2008). Deficiencies 
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due to prenatal alcohol exposure are estimated to occur in 1 to 5 percent of live births 

and create devastating emotional and financial burdens (May et al., 2009; Sampson et 

al., 1997). In 1973, Jones and Smith first described the teratogenic effects of alcohol on 

children born to alcoholic mothers, which have now become the characteristic signs of 

Fetal Alcohol Syndrome (FAS). The three defining signs of FAS include facial 

abnormalities such as a smooth philtrum and short palpebral fissures, both prenatal and 

postnatal growth deficits, and CNS abnormalities that can be structural, neurological, 

behavioral or any combination thereof (Warren et al., 2011). FAS is the most severe 

effect of prenatal alcohol exposure. FAS has a prevalence of 0.5 to 7.0 per 1,000 live 

births in the United States (May and Gossage, 2001; May et al., 2009). However, 

prenatal alcohol exposure does not affect each child in the same way. 

Due to the wide variety of negative effects fetal alcohol exposure causes, specific 

terms were created to describe the consequences seen in children including alcohol-

related birth defects (ARBD), alcohol-related neurodevelopmental disorder (ARND), and 

fetal alcohol spectrum disorders (FASDs). ARBD refers to children with alcohol-related 

physical anomalies only  (Stratton et al., 1996). ARND is diagnosed in a child with 

confirmed prenatal alcohol exposure who has CNS neurodevelopmental, cognitive, or 

behavioral abnormalities (Stratton et al., 1996). In 2004, FASD was developed as an 

umbrella term to describe children who were prenatally exposed to alcohol and have a 

spectrum of deficits that may include physical, mental, behavioral, and/or learning 

disabilities with lifelong repercussions (Bertrand, 2004). FASD has a higher estimated 
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prevalence than FAS of 1 to 5 percent of live births in the United States (May et al., 

2009; Sampson et al., 1997,). Currently there are no generally accepted standard 

recommendations for diagnosing FASD. Clinicians tend to use the 4-Digit Code, a 

revised version of the Institute of Medicine guidelines or a Canadian set of diagnostic 

criteria to diagnose FAS and other adverse effects due to prenatal alcohol exposure 

(Astley and Clarren, 2000; Chudley et al., 2005; Hoyme et al., 2005).  

Disabilities due to prenatal alcohol exposure persist throughout life and produce 

major societal and financial burdens due to health care costs, residential care, 

productivity losses and special education services. Overall, the estimated cost of FASD 

in the United States is $6 billion per year (Lupton et al., 2004). Even though widespread 

efforts have been made to inform and educate women on the harmful effects of drinking 

during pregnancy, 120 million women in the United States consume alcohol and about 

10 percent continue to drink even after learning they are pregnant (Centers for Disease 

Control and Prevention 2002).  

Diagnosis of FASD in the clinic as well as in research has greatly improved due 

to enhancements in detection criteria. Nonetheless, there still is failure to diagnose and 

underreporting of prenatal alcohol exposure due to subtle signs and/or similarities with 

other disorders such as ADHD. The earlier affected individuals are diagnosed and 

receive the necessary medical and social services needed the greater the improvement 

for the quality of life for these people and their families. Today a vast amount of 

research is being conducted on all aspects of FASD including maternal risk factors, 
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detection of biomarkers of alcohol in fetuses, improving physical detection in children, 

elucidating alcohol’s neuropathological effects, and improving learning and behavioral 

deficits.  

Current research on FASD 

Prenatal alcohol damage in humans ranges from mild to severe and does not 

consistently produce the same effects in different individuals. Current studies have 

shown that the most significant contributors to the variability in dysmorphology and 

developmental deficits are due to the quantity, frequency and timing of alcohol exposure 

(May et al., 2007, 2008; May and Gossage, 2011). Other maternal risk factors include 

age, number of pregnancies, number of pregnancies that progressed past 24 weeks, 

and nutritional and socioeconomic states (Bingol et al., 1987; Keen, 2010; May et al., 

2004, 2007, 2008; May and Gossage, 2011).  

A majority of children prenatally exposed to alcohol may not present with obvious 

characteristics of prenatal alcohol exposure. Therefore, diagnosis of FASD requires 

maternal confirmation. Yet maternal confirmation of alcohol consumption during 

pregnancy and drinking histories are usually unreliable and more sensitive and reliable 

biomarkers of alcohol use are needed. One biomarker is fatty acid ethyl esters (FAEEs) 

that are metabolites formed when alcohol combines with free fatty acids (Laposata, 

1998). It has been shown that FAEEs can be extracted and detected in meconium, the 

first stool of a newborn, to determine prenatal alcohol exposure (Bearer et al., 1999, 

2003). Also FAEE detection is sensitive enough to identify moderate and binge-drinking 
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patterns but is confounded by the small window for specimen collection, unavailability of 

the meconium sample, and the process of freezing the specimen within the first 12 

hours (Bearer et al., 1999, 2003). Recent research includes hair FAEE analysis and 

dried blood spot specimen analysis used to detect phosphatidylethanol (Bakhireva and 

Savage, 2011). Present studies are also investigating detection in children prenatally 

exposed to alcohol using specific facial measurements. 

A major distinguishable hallmark of FAS and FASD are facial dysmorphologies, 

however, subtle facial characteristics are not very easy to detect in the clinic. Currently, 

research is being done on using three-dimensional computer recognition imaging as a 

means to detect FAS (Wetherill and Foroud, 2011). Once various images are taken of a 

child’s face, images can be analyzed to measure precise length, width, and height of 

certain areas of the face and precise shapes can be generated from specific landmarks. 

Studies have found differences in eye width and shapes of certain facial regions 

between children not prenatally exposed to alcohol and children diagnosed with FAS 

(Klingenberg et al., 2010; Moore et al., 2007). It has been proposed that computer 

recognition imaging may be a promising tool in the clinic to diagnose FASDs. Moreover, 

magnetic resonance imaging (MRI) in fetal mice exposed to alcohol are showing results 

consistent with human data on facial and brain malformations (Parnell et al., 2009; 

Sulik, 2005). 

MRI is being used to detect structural brain and facial dysmorphologies due to 

prenatal alcohol exposure. Studies have found holoprosencephaly, the abnormal 
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median joining of the right and left cerebral hemispheres, and reductions in corpus 

callosum, olfactory bulbs, hippocampus, and cerebellum tissues in fetal mice prenatally 

exposed to ethanol (Parnell et al., 2009; Sulik, 2005). Facial MRI in fetal mice of 

ethanol-exposed mothers has found close positioning of the nostrils and a long upper 

lip, consistent with findings in humans with FAS (Sulik, 2005). Other MRI techniques 

such as diffusion tensor imaging and magnetic resonance spectroscopy are also being 

utilized and refined to study alcohol’s adverse effects on the CNS. Due to these 

devastating CNS defects, children with FASD show many behavioral and learning 

difficulties. 

Children with FASD show major behavioral deficits in verbal and spatial learning, 

memory, planning, problem solving, poor social skills, balance and motor control, and 

impairments in reading, math, and spelling (Coles, 2011; Paley and O’Connor, 2011; 

Willoughby et al., 2008). Also FASD children tend to have difficulty maintaining attention 

and self-regulation. Memory seems to be critically affected by prenatal alcohol exposure 

and research has found there are complications especially in learning new material. 

Furthermore, children show deficits in being able to select and employ effective learning 

strategies (Coles, 2011). Due to these learning deficits, it takes children prenatally 

exposed to alcohol more trials to master certain material. Most interventions showing 

positive results include therapists trained in specific tasks working with FASD children 

individually. O’Connor et al. created a parent-assisted social skills intervention called 

Children’s Friendship Training (CFT) specifically for children with FASD that was 
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extended to a community mental health center (Frankel and Myatt, 2003). CFT teaches 

social skills to help children be accepted in society and sessions include instruction on 

basic rules of social behavior, rehearsing, and coached practice. 

Model organisms used for prenatal alcohol studies 

 Model organisms serve as powerful research tools for studying drugs of abuse, 

including alcohol. There are a wide variety of model organisms from bacteria to fungi to 

invertebrates including C. elegans and Drosophila melanogaster to rodents, fish, and 

monkeys with each having its own advantages. Different model organisms are studied 

to understand specific biological mechanistic processes and fundamental 

consequences of alcohol use, abuse, and dependence with the goal of finding new 

methods for treating humans who suffer from alcoholism. In alcohol studies, model 

organisms allow for genetic, dietary, and environmental manipulations.  

Many developmental prenatal alcohol exposure studies have been conducted in 

rodent model organisms. In rodent studies, maternal exposure to alcohol has been 

shown to increase pup mortality, decrease pup weights, and attenuate crucial growth 

spurts (Abel and Dintcheff, 1978; Jones and Chernoff, 1978; Middaugh and Boggan, 

1995; Singh et al., 1992; Vaglenova and Petkov, 1998). The rotarod and inclined plane 

tests are used to measure balance, motor coordination, and learning. Offspring of 

mothers exposed to ethanol during gestation show severe impairments compared to 

their control counterparts in both the rotarod and inclined plane tests (Abel and 

Dintcheff, 1978). Similarly, the two-way active avoidance test is used to measure 
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learning and memory. This test uses a light and sound cue to signify when a foot shock 

will be applied. Vaglenova et al. found that progeny of ethanol treated Wistar rats had 

severe learning and memory deficits at both 9 weeks and 5 months of age and had 

significantly lower numbers of avoidances and were not able to retain avoidance 

information. Furthermore, similar to human studies, ethanol has been shown to have 

differential effects due to varying exposure times. The offspring of mice treated with 

ethanol, who continued to be treated with ethanol after birth, showed hyperactive 

behavior with increased frequency of exploration and scanning and decreased self-

grooming (Cutler et al., 1979). In contrast, juvenile mice treated with ethanol for 5 days 

showed increased social investigation (Cutler et al., 1979). 

Rodent studies have also replicated human findings with prenatal alcohol 

exposure causing facial dysmorphologies as well as CNS malformations. Studies have 

shown that alcohol causes inhibition of neuronal growth and decreased brain weight in 

rat fetuses (Lindlsey et al., 2003; Singh et al., 1992). Moreover, rodent studies have 

shown prenatal alcohol exposure causes craniofacial abnormalities including short 

palpebral fissures, a long upper lip, and a smooth philtrum, similar to children with 

FASD (Sulik et al., 1982; Sulik et al., 2005). Rodent studies have also found similar 

results to human studies with FASD and found the corpus callosum, olfactory bulbs, 

hippocampus and cerebellum are severely affected by prenatal alcohol exposure (Sulik 

et al, 2005). 
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Similarly, non-rodent animal models have found consistent results with prenatal 

alcohol exposure. Chick studies have found increased mortality rates, suppression of 

embryo growth, and inhibition of brain growth in alcohol exposed chick embryos (Boyd 

et al., 1984; Carver et al., 1999; Pennington et al., 1983; Satiroglu-Tufan and Tufan, 

2004). Likewise, Potter et al. found delayed growth and organ development in fetuses of 

alcohol drinking mothers. Alcohol studies using non-mammalian model organisms 

including the Japanese medaka, zebrafish, and Xenopus laevis showed craniofacial 

malformations in the head, mouth, lower jaw, eyes and cartilage around the tail region in 

embryos treated with alcohol (Loucks and Ahlgren, 2012; Nakatsuji, 1983; Wang et al., 

2006). Wang et al. further showed that alcohol caused a dose-dependent reduction in 

survival and hatching rates along with mortality, and cardiovascular defects in medaka. 

Marrs et al. also showed cardiovascular defects in zebrafish embryonically exposed to 

ethanol along with uncoordinated movement. Offspring of Drosophila exposed to 

alcohol had decreased hatching, delayed development, and physical malformations of 

the legs and wings (Ranganathan et al., 1987). 

Importantly, many studies across a wide variety of model organisms have 

replicated human FASD findings of the effects of prenatal ethanol exposure on growth 

retardation, brain size and development, physical dysmorphologies, behavioral defects 

and learning and memory deficits. From prenatal alcohol exposure studies using model 

organisms, various signaling molecules and proteins have been implicated in FASD 

such as retinoic acid, epidermal growth factor (EGF), and cyclic adenosine 
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monophosphate (cAMP) (Henderson et al., 1989; Pennington et al., 1983; Satiroglu-

Tufan and Tufan, 2004, Shibley and Pennington, 1997).  

C. elegans as a model organism for prenatal alcohol studies 

Caenorhabditis elegans (C. elegans) serves as a powerful genetic tool due to its 

simple, well-characterized nervous system consisting of 302 neurons and its conserved 

neurobiology with humans (White et al., 1986). Furthermore, the entire C. elegans 

genome has been fully sequenced (C. elegans Genome Consortium, 1998) and each 

neuron has been described and had its connections mapped (White et al., 1986). 

Moreover, the developmental fate of each somatic cell has been mapped (Sulston et al., 

1983). 

Recently, C. elegans has emerged as a novel model organism to investigate the 

effects of ethanol exposure on development. Davis et al. found that larval ethanol 

exposure in C. elegans causes growth and developmental delays. Acute embryonic 

ethanol exposure significantly increased embryonic lethality and caused mild to severe 

dysmorphologies (Davis et al., 2008). Chronic ethanol exposure during larval 

development produced more severe developmental effects including delays in gonadal 

development and onset of egg laying, smaller brood sizes and decreased lifespan 

(Davis et al., 2008). In addition, Lin et al. showed that developmental delays in 

embryonic worms are first observed after 3 hours during chronic ethanol exposure and 

are most severe during hatching.  

SLO-1 BK channels  
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slo-1 was first identified in Drosophila and called slowpoke and was later 

identified in C. elegans when Wang et al. conducted a genetic screen to identify 

regulators of neurotransmitter release. slo-1 was the sole ion channel isolated 

suggesting that SLO-1 BK channels are unique in their ability to regulate 

neurotransmitter release (Wang et al., 2001). Importantly, SLO-1 channels have also 

been shown to be activated by ethanol and play a significant role in intoxication.  

SLO-1 has a high level of sequence homology between mammals such as 

rodents and humans and C. elegans and Drosophila. In C. elegans, slo-1 expression is 

found in both muscles and neurons (Wang et al., 2001). Previously, in ethanol 

sensitivity screens, Davies et al. isolated multiple loss-of-function mutations in slo-1 that 

showed strong resistance to ethanol in locomotion and egg laying assays. Conversely, 

gain-of-function mutants of slo-1 looked similar to intoxicated animals. It was also 

shown through electrophysiology that physiologically relevant doses that causes 

intoxication in humans activates the BK channel in vivo and neuronal SLO-1 produces 

ethanol sensitivity (Davies et al., 2003). Furthermore, mammalian studies have also 

shown that BK channels are stimulated by ethanol and develop tolerance (Dopico et al., 

1996; Treistman and Martin, 2009). 

Membrane lipids affect SLO-1 BK channels 

 Recently, the lipid environment on the cell membrane has emerged as an 

important modulator for the interaction between ethanol and proteins. Studies have 

shown the thickness of the lipid bilayer can modulate basal activity and ethanol 
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activation of the BK channel (Treistman and Martin, 2009; Yuan et al., 2004, 2007, 

2008). BK channels were extracted from human embryonic kidney-293 (HEK-293) cells 

and reconstituted into different artificial lipid bilayers. In a thin lipid bilayer of 

phosphatidylcholine (PC), initial ethanol exposure caused strong activation of BK 

channels whereas in thick sphingomyelin lipid bilayers, BK channels were inhibited and 

ethanol was not able to activate them (Crowley et al., 2005; Yuan et al., 2004, 2007, 

2008). Cholesterol content was also shown to alter BK channel activation by ethanol 

and acute ethanol tolerance (Bukiya et al., 2011; Yuan et al., 2011). Thus, altering 

membrane lipid composition modulates initial sensitivity and acute ethanol tolerance in 

BK channels.  

 Similarly, Bettinger et al. identified triacylglycerols (TAGs) as an important factor 

for the development of acute functional tolerance (AFT) to ethanol. Acute functional 

tolerance is a mechanism of the nervous system to quickly adapt to alcohol’s 

intoxicating effects. C. elegans develop AFT during a continuous exposure of ethanol. 

Previous work has shown that worms become intoxicated in 7-10 minutes to a moderate 

dose of exogenous ethanol. At this time point, animals have a severely depressed 

speed of locomotion and have an internal ethanol concentration of 45 mM. After 50 

minutes of continuous exposure, animals are moving significantly faster relative to the 

10 minute time point. These animals have an internal ethanol concentration about 65 

mM. These results suggest that behavioral adaptations induced by ethanol are not 
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mediated by metabolism but are a compensatory response induced by ethanol that we 

term AFT (Alaimo et al., 2012; Davies et al., 2004).  

CTBP-1, an NAD(H)-dependent transcriptional co-repressor, was shown to 

negatively regulate LIPS-7, a TAG lipase that metabolizes lipids. Chen et al. found that 

ctbp-1 mutants have a 16.8% decrease in TAGs and RNAi knockdown of lips-7 

increased levels of TAGs. lips-7 mutants were resistant to ethanol and fast developers 

of AFT and were more resistant to ethanol compared to wild-type N2 (Bettinger et al., 

2012). In contrast, ctbp-1 mutants were slower developers of AFT and more sensitive to 

ethanol (Bettinger et al., 2012). Taking into account in vitro mammalian BK channel 

activity can be modified by cell membrane lipid composition, these studies suggest that 

lipids could play a role in the development of tolerance to ethanol by sequestering BK 

channels (Bukiya, 2011; Crowley et al., 2005; Pietrzykowski et al., 2004; Yuan et al., 

2004, 2007, 2008, 2011).  

AWC chemosensory neurons in C. elegans 

C. elegans can sense an extensive variety of odors important to its development 

and survival due to the expression of several receptor genes (Troemel et al., 1995). 

AWC cells are a pair of olfactory neurons that together allow C. elegans to detect and 

discriminate between volatile attractive odorants including benzaldehyde, butanone, 

2,4,5-trimethylthiazole, and isoamyl alcohol (Bargmann et al., 1990, 1993). Expression 

of odorant receptors is asymmetrical in the AWCs. One receptor that is asymmetrically 

expressed is the seven transmembrane G-protein coupled receptor, STR-2. Wes and 
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Bargmann proposed a model for the use of asymmetry in the AWCs in which it is 

required for odor discrimination. In this model, one AWC neuron detects benzaldehyde 

and 2,3-pentanedione whereas the other AWC neuron detects butanone and 

benzaldehyde and butanone signaling attenuates benzaldehyde signaling (Figure 1, 

Wes and Bargmann, 2001).  

Proper functioning of AWC neurons can be measured using chemotaxis and odor 

discrimination assays (Bargmann et al., 1993; Wes and Bargmann, 2001). In a 

chemotaxis assay, worms are tested to see if they have the ability to recognize and 

travel toward or away from a point source of attractant or repellent. After various time 

points, worms are counted at the odorant, diluent, and throughout the rest of the plate. 

The chemotaxis index (CI) is then calculated as the number of worms at the odorant 

minus the number of worms at the diluent divided by the total number of animals 

(Bargmann et al., 1993). A CI close to 1 signifies a strong attractant, -1 signifies a 

strong repellent, and 0 signifies no response. Odor discrimination tests a worm’s ability 

to distinguish between different odors and chemotax towards an attractive odor in the 

presence of a uniform field of another odorant (Figure 1, Wes and Bargmann, 2001). 

AWC chemosensory pathway 

 AWC neurons make a stochastic decision where a suite of odorant receptors are 

asymmetrically expressed in 1 of the 2 AWCs (Lanjuin and Sengupta, 2004; Troemel et 

al., 1999). Early in development, AWC neurons are bilaterally symmetric and have not 

adopted their final cell fates. During embryogenesis, AWC neurons make an activity 
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dependent cell fate decision. The cell with less basal activity expresses str-2 while the 

cell with more basal activity does not express str-2 and subsequently specific groups of 

G protein-coupled receptors are asymmetrically expressed within the two AWCs 

(Troemel et al., 1999; Wes and Bargmann, 2001). Cell fate decisions can be monitored 

by the fusion of the str-2 promoter to GFP (str-2::GFP) (Troemel et al., 1999). AWC ON 

is denoted for the AWC neuron that expresses str-2::GFP while AWC OFF is the neuron 

that does not express str-2::GFP (Troemel et al., 1999). 

 The exact mechanism and subsequent pathway of the AWC ON and OFF 

decision has not been established. However, mutant screens and epistasis analysis has 

identified key genes associated with this cell fate decision and a predicted pathway has 

been suggested (Figure 2). The default state for AWC neurons is OFF and neurons will 

not become ON in the absence of the other AWC neuron (Troemel et al., 1999). The 

induction of AWC ON requires the collaboration of nsy-4 (nsy-neuronal symmetry 

mutant), a claudin-like gene that composes tight junctions, and nsy-5, an innexin gene 

that assembles a gap junction network (Chuang and Bargmann, 2007; VanHoven et al., 

2006). First, the future AWC OFF neuron signals to the other neuron to become AWC 

ON. The original signal is hypothesized to be a voltage signal that regulates membrane 

potential and travels through gap junctions formed by nsy-5 (Bauer Huang et al., 2007). 

This signal suppresses calcium entry by inhibiting UNC-2, UNC-36, and EGL-19, 

voltage-activated calcium channels and induces high OLRN-1 activity (Bauer Huang et 

al., 2007; Troemel et al., 1999). OLRN-1 is an uncharacterized protein that shares 
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distant similarity to Drosophila melanogaster RAW which restricts JNK signaling (Bauer 

Huang et al, 2007). OLRN-1 represses the UNC-43 mitogen-activated protein kinase 

cascade within the AWC ON neuron and sends information back to the AWC OFF cell 

(Bauer Huang et al., 2007). AWC ON identity is then maintained by NSY-7, a DNA-

binding protein and transcriptional regulator that represses AWC OFF genes (Lesch et 

al., 2007; Taylor et al., 2010). 

 The AWC OFF neuron maintains calcium entry via UNC-2, UNC-36 and EGL-19 

(Bauer Huang et al., 2007; Troemel et al., 1999). Calcium then activates UNC-43, a 

calcium/calmodulin-dependent protein kinase II (CaMKII) which physically interacts with 

and phosphorylates TIR-1, an adaptor protein (Chuang and Bargmann, 2001; Reiner et 

al., 1999). TIR-1 localizes and activates NSY-1, a mitogen-activated protein kinase 

kinase kinase (MAPKKK) (Chuang and Bargmann, 2001; Sagasti et al., 2001). NSY-1 

then phosphorylates and activates SEK-1, a mitogen-activated protein kinase kinase 

(MAPKK) (Sagasti et al., 2001; Tanaka-Hino et al., 2002). Subsequently, it is believed 

that SEK-1 activates an unidentified C. elegans mitogen-activated protein kinase 

(MAPK) that then suppresses transcription of str-2 rendering the neuron AWC OFF 

(Bauer Huang et al., 2007; Tanaka-Hino et al., 2002; Taylor et al., 2010). AWC OFF 

maintains its identity through HMBX-1, a transcription factor, during the adult stage 

(Lesch et al., 2010). 

Lipids in C. elegans 
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Lipids have a wide range of important functions in mammals, which include being 

structural components of membranes and sources of energy. Thus, the regulation of 

lipids is important for vital biological functions. C. elegans, similar to mammals, utilize 

various desaturases and elongases to synthesize fatty acids from their diet of bacteria 

to produce saturated, monounsaturated, and polyunsaturated fatty acids important for 

their development, reproduction, and lifespan (Vrablik and Watts, 2012; Wallis et al., 

2002; Watts, 2009). Worms have fatty acid synthesis pathways that produce a variety of 

monomethyl branched chain fatty acids (mmBCFAs) as well as saturated, 

monounsaturated, and polyunsaturated fatty acids (Figure 3).  

C. elegans also synthesize monomethyl branched chain fatty acids de novo from 

acetyl CoA vital for their development and growth (Kniazeva et al., 2004; Watts, 2009). 

In addition, worms are cholesterol auxotrophs and consume this sterol through their diet 

(Ashrafi, 2007). Importantly, C. elegans do not require essential fatty acids in their diet 

like mammals because they have all of the required biosynthetic enzymes. The 

complexity of their fatty acid pathway allows for flexibility if biosynthetic enzymes are not 

readily available to produce specific fatty acids. 

Hypothesis 

 Our preliminary data has shown that slo-1 gain-of-function mutants have 2 AWC 

neurons with str-2::gfp expression (data not shown). Also by adding the lips-7 mutation, 

which increases TAG levels, in a slo-1 gain-of-function background we can suppress 

the slo-1 gain-of-function phenotype and animals have 1 AWC neuron with str-2::gfp 



www.manaraa.com

	   25 

expression. This suggests that lipid content of the cell membrane can modify SLO-1 

activity. Furthermore, by treating kyIs140 animals to ethanol during embryogenesis we 

can alter their AWC cell fate decision and animals express 2 apparent AWC neurons 

expressing str-2::gfp. Taken together, we hypothesize that exposing embryonic kyIs140 

animals to ethanol will cause persistent functional consequences due to the altered 

AWC cell fate decision. Furthermore, by altering the lipid levels of ethanol-exposed 

animals we may be able to attenuate the effects of ethanol on the cell fate decisions in 

their embryos. 
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Figure 1. Model for behavioral defects observed in slo-1 gain-of-function mutants 

In wild-type animals, both AWC neurons recognize benzaldehyde. AWCON recognizes 
butanone and AWCOFF recognizes 2,3-pentanedione. Butanone signaling attenuates 
benzaldehyde signaling in AWCON (red bar). In slo-1 gain-of-function mutants, the 
AWCOFF neuron is transformed into AWCON, 2,3-pentanedione chemotaxis is lost, and 
butanone attenuates benzaldehyde signaling in both AWC neurons. (Wes and 
Bargmann, 2001). 
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Figure 2. Model for AWC ON and OFF pathways 

The future AWC OFF signals to the AWC ON via NSY-5 gap junctions. In AWC ON, the 
signal suppresses the UNC-2, UNC-36, and EGL-19 voltage-activated calcium channels 
and allows high OLRN-1 activity. OLRN-1 inhibits the UNC-43 (CaMKII)/NSY-1/SEK- 1 
kinase cascade within AWC ON. (Bauer Huang et al., 2007) 
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Figure 3. Fatty acid synthesis pathways in C. elegans 

(a) De novo synthesis of polyunsaturated fatty acids (PUFAs). (b) Monomethyl 
branched-chain fatty acid (mmBCFA) synthesis. (Watts, 2009) 
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Chapter 2: Materials and Methods 

 

Nematode maintenance and strains 

Wild-type was C. elegans variety Bristol, strain N2. All other strains contained the 

integrated str-2::GFP transgene kyIs140 (I) (Troemel et al., 1999). kyIs140 consists of a 

transgene with the str-2 promoter inserted and fused into a GFP vector integrated on 

chromosome I. The strains that were used in these studies were: N2, CX3695 kyIs140, 

RB2287 lips-7(ok3110), JCB34 ctbp-1(eg613), KP1097 dgk-1(nu62), BZ142 slo-

1(eg142), JCB95 slo-1(ky389), JCB97 slo-1(ky399), JCB96 lips-7(ok3110);slo-1(ky389), 

JCB98 lips-7(ok3110); slo-1(ky399), JCB78 kyIs140;lips-7(ok3110), JCB76 

kyIs140;ctbp-1(eg613), JCB100 kyIs140;dgk-1(nu62), JCB77 kyIs140;slo-1(eg142), 

JCB88 kyIs140;slo-1(ky389), JCB97 kyIs140;slo-1(ky399), JCB122 kyIs140;lips-

7(ok3110);slo-1(ky389), and JCB75 kyIs140; lips-7(ok3110);slo-1(ky399). Strains were 

generated in the Bettinger laboratory or were provided by the Caenorhabditis elegans 

Genetics Center (CGC, University of Minnesota, Minneapolis, MN).  

Nematodes were maintained on 6 cm Petri plates containing nematode growth 

medium (NGM) agar seeded with E. coli food, OP50, at 20°C. Hermaphrodite worms 

were maintained by self-fertilization. 

Generation of kyIs140 double and triple mutants 

 In order to monitor AWC cell fate changes, all of our strains needed to express 

str-2::GFP. Since kyIs140 animals contain the str-2::GFP transgene we used these 
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animals to generate strains expressing str-2::GFP. lips-7(ok3110), ctbp-1(eg613), dgk-

1(nu62), slo-1(eg142), slo-1(ky389), slo-1(ky399), lips-7(ok311);slo-1(ky389), and lips-

7(ok311);slo-1(ky399) strains were each crossed with kyIs140 males. 2 mutant 

hermaphrodite L4s were placed with 6 kyIs140 adult males on a single small plate and 

left overnight. On day 2, hermaphrodites were removed and plated individually. In the 

first filial (F1) generation we can distinguish successfully mated hermaphrodites since 

they will generate approximately a 50% male progeny and all progeny will be 

heterozygous. To confirm progeny are heterozygous for kyIs140, hermaphrodite worms 

were selected based on GFP fluorescence in an AWC neuron using a Zeiss Discovery 

V12 Stereoscope. This would indicate that worms were cross progeny because the GFP 

construct was donated by the kyIs140 father. These worms were placed individually on 

plates and allowed to self fertilize and lay eggs to produce the second filial (F2) 

generation. In the F2 generation, the animals will have a variety of genotypes. F2 worms 

were selected based on if they expressed GFP fluorescence in an AWC neuron and if 

they showed a phenotype similar to the second mutation, for example, slo-1(ky389) are 

slower and flatter compared to kyIs140. Selected F2 worms were individually plated and 

allowed to self-fertilize to generate the third filial (F3) generation. If all animals in the F3 

generation had GFP fluorescence in an AWC neuron, it would indicate the F2 

generation was homozygous for kyIs140. If only half of the F3 generation was glowing 

this would indicate animals are heterozygous for kyIs140. If present, homozygous 

kyIs140 F3 progeny were selected and maintained. DNA from subsequent generations 
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was then isolated and used in Polymerase Chain Reaction (PCR). If needed, single 

nucleotide polymorphism (SNP) markers were used in PCR. Samples were also 

sequenced using an ABI 3730xl DNA Analyzer at the DNA Sequencing Core (VCU) to 

identify if the second mutation was present. If only heterozygous kyIs140 were present, 

animals expressing GFP were picked individually and allowed to self-fertilize to 

generate homozygous kyIs140 animals. Once kyIs140 was homozygous, DNA was 

isolated and PCR or sequencing was conducted to identify the second mutation. From 

PCR and sequencing results, if animals were both homozygous for kyIs140 and the 

second mutation they were selected and maintained. If only animals that were 

homozygous for kyIs140 and heterozygous for the second mutation were isolated, 

animals were picked individually from that generation and allowed to self-fertilize. In the 

next generation, one-fourth of the progeny are homozygous for the second mutation. 

Animals are then picked based on phenotype of the mutation and allowed to self-

fertilize. DNA from subsequent generations is then isolated and PCR and sequencing 

are run again. Once animals are both homozygous for kyIs140 and the second mutation 

they are maintained.  

Chemotaxis and odor discrimination assays 

 Assay agar (2% agar with 5 mM KPO4, 1 mM MgSO4, 1 mM CaCl2) was melted 

and 10 ml were aliquoted into 10 cm Petri plates (Fisher). Assay plates were allowed to 

dry at room temperature overnight on a bench top. For odor discrimination plates, 12 µl 

or 24 µl of butanone was added to 100 ml of cooled liquid agar before the plates were 
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poured (see Figure 5). The day of the experiment, assay plates were dried for 1 hour at 

37°C with lids off. Two marks were made on the bottom of all plates at opposite sides 

and about 0.5 cm from the edge of the plate (see Figures 4 and 5). Sodium azide (1 µl 

of 1M NaN3) was placed at both the diluent and odorant spots to immobilize worms 

when they reached an odorant spot. Sodium azide anesthetized worms within about a 

0.5 cm radius of the odorant spots. A spot of the odorant (1 µl of 1:100 

benzaldehyde:EtOH) was place on the agar over one mark and a spot of diluent (1 µl of 

100% ethanol) was placed over the other mark. About 100-400 well-fed age matched 

first day adult animals were washed off of culture plates into a 15 mL conical tube with 2 

mls of S. Basal (0.1 M NaCl, 0.05 M KPO4, ddH2O). Worms were allowed to settle, the 

supernatant was removed and animals were washed three more times with S. Basal 

and once with assay buffer (5 mM KPO4, 1 mM MgSO4, 1 mM CaCl2, ddH2O) to free 

them of bacteria. Once worms settled in assay buffer, a low retention tip was used to 

pipet 10-15 µl of worms. Worms were then placed near the center edge of the plate, 

equidistant from the diluent and odorant spots and off center at the origin (see Figures 4 

and 5). Excess liquid was then wicked off using a twisted Kimwipe. Plates were sealed 

with Parafilm and arranged as a single layer on the bench top. At 1 hour and 2 hours 

after the assay began, the numbers of animals at the diluent and odorant spots were 

counted. Worms were counted at a spot if they were within 1 cm of the center of the 

odorant spots. The total number of animals in the assay was also determined. A specific 

chemotaxis index (CI) was calculated as: 
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CI= 

number of worms at odorant – number of animals at diluent 

total number animals in assay 

A number close to 1 indicates a strong attractant, -1 indicates a strong repellent, 

and 0 indicates no response.  

 Control experiments with wild-type and mutant worms revealed that 2 hours was 

a sufficient amount of time for all mutants tested to reach odorant sources. Therefore, 

assays were counted twice, once after 1 hour and once after 2 hours. 

Acute embryonic ethanol exposure 

 NGM agar plates were seeded over half of their surface with E. coli OP50. The 

next day, plates were dried for 1 hour at 37°C before 100% ethanol (at 4°C) was 

pipetted onto plates based on plate weights to a final total concentration of 500 mM. 

Care was taken to not get ethanol on bacteria because it will kill bacteria and make it 

less palatable to the worms. Plates were sealed with Parafilm and left for 2 hours at 

room temperature to equilibrate. 

 To generate age-synchronized adult populations of animals that had 

experienced embryonic exposure to ethanol, we allowed hermaphrodite worms to 

generate eggs in the presence of ethanol. L4 worms that had been reared on non-

ethanol containing plates were placed on food on ethanol plates and left for 14-16 hours 

to allow them to generate eggs. These animals were then moved to non-ethanol 

containing NGM plates seeded with OP50, and allowed to lay eggs for 2-4 hours before 
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being removed. Eggs were then grown up on plates at 20°C for 2 days until they were 

L4 larvae before being scored for AWC phenotype. The next day, when they were first 

day adults, they were used in chemotaxis and odor discrimination assays. 

Chronic developmental exposure to ethanol  

 Plates were incubated with ethanol to a final concentration of 400 – 700 mM as 

previously described (above). L4 worms were placed on ethanol plates for 14-16 hours 

to allow them to become adults, then were moved to a second set of 400 – 700 mM 

ethanol plates and allowed to lay eggs for 2-4 hours. Eggs were grown up on 400 - 700 

mM ethanol treated plates at 20°C. Worms were left on 400 – 700 mM ethanol treated 

plates and closely monitored and scored for AWC phenotype once they reached the L4 

larval stage.  

Microscopy 

 For all microscopy, live animals were immobilized on a 5% agar pad containing 

80 mM NaN3 that was fixed on a glass slide and covered with a coverslip. 

AWC cell identification was based on characteristic morphology and location of 

green fluorescent protein (GFP)-positive cell nuclei examined by simultaneous 

fluorescence and Nomarski differential interference contrast microscopy (DIC). 

Fluorescence microscopy was carried out on a Zeiss Axio Imager Upright Microscope. 

Most animals were scored under a 20X Plan-Neofluar or a 40X Plan-Neofluar oil 

immersion objective. 

Aldicarb assay 
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 Aldicarb assay plates contained 10 ml of assay agar (2% agar, 5 mM KPO4, 1 

mM MgSO4, 1 mM CaCl2) with 0 mM, 0.25 mM or 0.50 mM aldicarb. Plates were stored 

overnight at 4°C. The next day copper rings were melted into the plates to allow us to 

test different strains of animals on one plate at the same time. Ten animals were picked 

per ring and each animal was poked with a platinum pick at 30-minute intervals for 3 

hours. Animals were classified as spontaneously moving, not moving but will move if 

prodded and paralyzed and will not move when prodded 3 times. Hypersensitive 

animals from this assay were then maintained and dgk-1 mutants were verified by PCR. 

DiI staining 

 Stock DiI solution in dimethylformamide (DMF, 2 mg/ml) was diluted in M9 (1:100 

DiI:M9). Diluted DiI (150 – 250 µl) was pipetted into wells on Borhner slides and live 

animals were soaked in diluted DiI for 2 hours. Borhner slides were moved to foil 

covered large Petri plates, and the chambers were hydrated with 2 large spots of 50 µl 

of ddH2O. Worms were then immobilized and mounted on 5% agar pads containing 80 

mM NaN3 fixed on a glass slide with a coverslip. A Texas Red filter was used for 

fluorescence microscopy. 

Developmental timing of GFP expression 

 To evaluate AWC marker expression in the L1, L2, L3, L4, and young adult larval 

stages, animals were age-matched and scored at each stage. Thirty gravid adult worms 

were picked to an NGM plate seeded with OP50 and allowed to lay eggs. After 2 hours, 

adult worms were picked off and eggs were left on plates. Eggs were allowed to hatch 
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and grow up for 60 hours at 20°C until worms were L4s. 75 – 400 L4 worms were 

transferred to half seeded plates untreated or treated with various ethanol 

concentrations (see Chronic developmental exposure to ethanol, above, for preparation 

of the plates). These animals developed into adults overnight and began to lay eggs on 

the ethanol-containing plates. The eggs were allowed to hatch, and the animals’ 

postembryonic development occurred on ethanol-containing plates. To compare GFP-

expressing neurons in L1, L2, L3, L4, and young adults grown on ethanol, 50 animals 

were picked for scoring at each time point. L1 animals were scored 9 hours after 

hatching at 20°C. L2 animals were scored 19.5 hours after hatching at 20°C. L3 animals 

were scored 30 hours after hatching at 20°C. L4 animals were scored 44 hours after 

hatching at 20°C. Young adult animals were scored 54 hours after hatching at 20°C. 
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Figure 4. Chemotaxis assay 

(a) In a chemotaxis assay, worms move towards a spot of attractive odorant (filled 
circle). Worms are placed at the origin spot and allowed to freely move for 1 and 2 
hours. Worms are immobilized by sodium azide if they reach either the odorant or 
diluent spot. (b) The chemotaxis index is calculated by counting the number of animals 
immobilized at the spot of odorant minus the number of animals immobilized at the 
diluent spot (open circle) divided by the total number of animals in the assay. 
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Figure 5. Chemotaxis and odor discrimination assays  

Animals were tested on plates absent of butanone (upper plate, white) or containing 
butanone in the agar (lower plate, yellow) for chemotaxis to benzaldehyde. (a) Wild-
type, N2 animals with 1 AWCON chemotax toward benzaldehyde. (b) slo-1gf animals 
with 2 AWCON chemotax toward benzaldehyde and are not able to discriminate 
benzaldehyde in the presence of butanone in the agar (see Introduction, AWC 
chemosensory neurons in C. elegans). 
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Chapter 3: Results and Discussion 

 

kyIs140;slo-1(ky389gf) mutants are deficient in chemotaxis  

Wild-type N2 and kyIs140 have 1 AWC ON (data not shown) and a high CI 

indicating they are both strongly attracted to benzaldehyde (Figure 6). kyIs140 animals 

contain the str-2 promoter fused to GFP on chromosome I in a wild-type N2 

background, which allows us to distinguish str-2 expressing AWC neurons from non-str-

2 expressing AWC neurons and is a marker of AWC asymmetry. Wild-type animals 

express str-2::gfp in 1 AWC neuron, whereas slo-1(gf) animals have a loss of 

asymmetry and express str-2::gfp in both AWC neurons. We first scored kyIs140;slo-

1(ky389gf) mutants using fluorescence microscopy and found they have 2 AWC ON 

(data not shown), as has been previously reported (Troemel et al., 1999). This suggests 

that slo-1 plays an important role in AWC cell fate decisions. We then tested wild-type 

and mutant animals in chemotaxis assays to see if loss of asymmetry affects their 

chemotaxis behavior. 

slo-1 gain-of-function mutants have inappropriately active SLO-1 channels and 

are slightly locomotor defective. slo-1 gain-of-function mutants move slower than wild-

type N2 animals. Due to the slo-1 gain-of-function mutants’ slower locomotion 

phenotype, time course assays were done to see if additional time would allow more of 

these mutants to reach odorant or diluent spots. Control experiments showed that 2 

hours was an adequate amount of time for animals to reach odorant spots. We tested 
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the ability of slo-1 gain-of-function mutants to chemotax toward benzaldehyde and 

found that they have a low CI indicating they are not able to chemotax as well as wild-

type N2 and kyIs140 animals (Figure 6). This suggests that loss of AWC asymmetry 

affects chemotaxis behavior. 

Loss of lips-7 can suppress the chemotaxis defect of slo-1(ky389gf) 

Recent work in our lab has shown that triacylglycerol (TAG) levels are important 

in the development of tolerance to alcohol. Importantly, it was shown that genetic 

manipulation of lips-7, which encodes a lipase that regulates TAG levels, can modulate 

the locomotion phenotype in slo-1 gain-of-function mutants (Bettinger et al., 2012). 

Furthermore, slo-1 gain-of-function mutants show str-2::gfp expression in 2 AWC 

neurons whereas the lips-7 mutation in a slo-1 gain-of-function background restores the 

wild-type phenotype of str-2::gfp expression in 1 AWC neuron (Kalyann Kauv and Jill C. 

Bettinger, personal communication). Therefore, we hypothesized that lips-7 might 

suppress slo-1 gain-of-function chemotaxis defects if increased levels of TAGs 

downregulate SLO-1 channels in AWC neurons.  We assayed kyIs140;slo-

1(ky389gf);lips-7 mutants and found the slo-1 gain-of-function phenotype is suppressed 

when the lips-7 mutation is present (Figure 6). This result suggests that TAG levels can 

alter the activity of SLO- channels and that that suppression could be significant enough 

to suppress a behavioral chemotaxis phenotype of the slo-1 gain-of-function. 

kyIs140;slo-1(ky389gf) are defective in odor discrimination 
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 Previously, Wes and Bargmann proposed a model that AWC ON and AWC OFF 

are both required for the discrimination of benzaldehyde in a field of butanone. They 

proposed that the AWC OFF neuron detects benzaldehyde and 2,3-pentanedione 

whereas the AWC ON neuron detects benzaldehyde and butanone (Wes and 

Bargmann, 2001). Furthermore, in the AWC ON neuron, butanone signaling attenuates 

benzaldehyde signaling thus animals with 2 AWC ON neurons will not be able to detect 

benzaldehyde in a field of butanone (Wes and Bargmann, 2001).  As previously 

reported by Wes and Bargmann, we found that slo-1(ky389gf) mutants are not able to 

chemotax toward benzaldehyde in the presence of butanone (Figure 7). We were also 

able to observe this effect after 1 (data not shown) and 2 hours with increasing 

concentrations of butanone (Figure 7). We used increasing concentrations of butanone 

to see a dose-dependent effect that was butanone-specific in slo-1(ky389gf) mutant 

behavior. We hypothesized that, similar to our chemotaxis data, lips-7 might suppress 

slo-1 gain-of-function odor discrimination defects. We found the lips-7 mutation in a slo-

1(ky389gf) background suppressed the slo-1 gain-of-function defective phenotype and 

restored the high CI toward benzaldehyde in the presence of butanone (Figure 7). This 

suggests that TAG levels can alter SLO-1 channel activity causing a change in AWC 

cell fate thereby causing a change in chemotaxis and odor discrimination behaviors.  

DiI staining and scoring of str-2::gfp expression in neurons 

 Based on the fact that inappropriately active SLO-1 channels in the gain-of-

function mutant could alter AWC asymmetry, and we have previously found that ethanol 
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activates SLO-1, we asked if ethanol could alter str-2::gfp expression. DiI is a lipophilic 

dye used to stain 6 amphid neurons that can be visualized using fluorescence 

microscopy. We used DiI staining to score untreated and ethanol treated animals to 

distinguish GFP fluorescing AWC neurons from other RFP fluorescing amphid neurons. 

Baseline DiI staining and scoring of AWC ON neurons in untreated kyIs140, 

kyIs140;slo-1(eg142), and kyIs140;slo-1(ky389) showed animals expressed 1 or 2 AWC 

ON neurons, respectively (Table 1). We scored ethanol treated animals when they were 

L4s and found that ethanol changed str-2::gfp expression in AWC neurons of kyIs140 

animals from 1 AWC ON to a second apparent AWC ON (Table 2).  These results were 

similar to previous preliminary data scoring AWC ON neurons using fluorescence 

microscopy (data not shown).  

Ethanol did not alter animals’ ability to chemotax 

If ethanol transforms str-2::gfp expression to 2 AWC ON, then ethanol treated 

progeny should have functional consequences and show defects in chemotaxis similar 

to slo-1 gain-of-function mutants. kyIs140 animals treated with 600 mM of ethanol were 

tested in chemotaxis and odor discrimination assays. We expected that ethanol treated 

animals had a second apparent AWC ON, and similar to slo-1 gain-of-function, would 

be able to chemotax toward benzaldehyde in the absence of butanone but would not be 

able to chemotax toward benzaldehyde in the presence of butanone. We found that 

kyIs140 animals exposed to 0 mM and 600 mM ethanol were still able to strongly 

chemotax toward benzaldehyde (Figure 8). Similarly, kyIs140 mutants treated with 600 
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mM ethanol were still able to chemotax toward benzaldehyde in the presence of 

butanone after 1 (data not shown) and 2 hours (Figure 9). This suggests that ethanol 

was causing a change in str-2::gfp expression during embryogenesis but this change 

did not have functional consequences. It is possible that the animals who were exposed 

to ethanol during embryogenesis were developmentally delayed. Both untreated and 

ethanol treated animals were scored at the same time and it is possible that mid-L4 

untreated animals and mid-L3 to early L4 stage ethanol treated animals were scored. 

This difference in developmental timing could have altered the scoring results and 

favored a second apparent AWC ON. 

Ethanol did not alter dgk-1 mutants’ ability to chemotax 

 We also tested kyIs140;dgk-1(nu62) mutants in chemotaxis and odor 

discrimination. DGK-1 displays diacylglycerol kinase activity and dgk-1(nu62) mutants 

have hyperactive neurotransmission. We were interested in testing if altering 

neurotransmission would change chemotaxis behavior. We found that kyIs140;dgk-

1(nu62) mutants were able to chemotax strongly toward benzaldehyde (Figure 6) and 

this suggests that altering neurotransmission does not change chemotaxis behavior. 

Also ethanol treated kyIs140;dgk-1(nu62) mutants were still able to chemotax toward 

benzaldehyde in the presence of butanone after 2 hours (Figure 10). This suggests that 

ethanol is not changing neurotransmission and altering chemotaxis behavior.  

Chronic ethanol altered str-2::gfp expression in neurons in kyIs140 and ctbp-1 

mutants 
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 Based on the initial observation that ethanol exposure altered str-2 expression in 

AWC neurons, but the surprising observation that there is no defect in chemotaxis, we 

hypothesized that continuous chronic ethanol exposure during embryogenesis and 

larval development could alter AWC asymmetry. kyIs140 animals were chronically 

treated with increasing ethanol concentrations starting from embryogenesis until they 

were scored as L4s. We found L4 kyIs140 animals chronically treated with ethanol in 

concentrations of 0 mM, 400 mM, 500 mM, 600 mM, and 700 mM had 1 AWC ON 

neuron (Figure 11). This suggested that prolonged ethanol exposure does not change 

str-2 expression in worms. We were surprised by this result because we saw before that 

ethanol treatment during embryogenesis caused a second apparent AWC to express 

str-2. 

In parallel, we also treated and scored ctbp-1 mutants. ctbp-1 is a transcriptional 

co-repressor that represses the transcription of the lips-7 gene. Chen et al. showed that 

ctbp-1 mutants have increased LIPS-7, a TAG lipase, causing a decrease in TAG 

levels. Due to having decreased TAG levels, ctbp-1 mutants provide a sensitized 

background to test ethanol’s effects on str-2 expression because more of their SLO-1 

protein should be accessible to activation by ethanol. We found that, similar to kyIs140 

L4s, ctbp-1 mutants chronically treated with 0 mM, 400 mM, 500 mM, and 600 mM of 

ethanol had 1 AWC ON neuron (Figure 12). However, about half of the ctbp-1 mutants 

treated with 700 mM ethanol had 0 AWC ON while half had 1 AWC ON (Figure 12). 

This suggests that chronic exposure to a high concentration of ethanol can change str-2 
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expression to 0 AWC ON. This could be occurring by ethanol is interfering with signaling 

between the two AWC neurons. An AWC neuron requires a signal from the other AWC 

neuron in order to express str-2::gfp (Troemel et al., 1999).  When either the left or right 

AWC precursor neuron was laser ablated, the other neuron always became AWC OFF 

(Troemel et al., 1999). Thus, disrupting the cross communication between AWC 

neurons could cause both neurons to become AWC OFF.  

kyIs140 animals express GFP in cells 

 To address the developmental timing issue of scoring ethanol treated progeny, a 

time course experiment was conducted. All previous AWC scoring experiments were 

performed on L4 worms. To verify that this was an ideal larval stage to score animals, a 

time course scoring experiment was performed on various larval stages of kyIs140 

animals exposed to 0 mM – 600 mM ethanol. A total of 50 individual worms were 

examined at each larval stage. Based on a previous study, we hypothesized that in 

untreated animals str-2 expression would be fixed after the L1 stage when expression is 

upregulated in AWC ON (Troemel et al., 1999). In contrast, we expected to see a 

change in str-2 expression in ethanol treated animals, especially in animals during the 

L4 stage, as we previously observed.  Interestingly, we found that L1 animals had a 

range of 2 – 9 cells expressing GFP (Figure 13).  L2 animals had 2 – 6 cells expressing 

GFP while L3 animals had a 1 – 4 cells expressing GFP (Figures 14 and 15).  

Additionally L4 animals had 0 – 3 cells expressing GFP with most animals having 1 or 2 

cells expressing GFP whereas young adult kyIs140 animals had either 1 or 2 cells 
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expressing GFP with the majority of animals having only 1 cell expressing GFP (Figures 

16 and 17). This suggests that as kyIs140 animals progress through larval development 

from L1 to young adults, the number of cells expressing GFP decreases from 9 cells to 

1 cell expressing GFP (Figures 13 – 17). Importantly, this showed that developmental 

timing of scoring ethanol treated animals affects the number of cells expressing GFP. 

Therefore, cells expressing GFP and not AWC neurons of ethanol treated animals were 

originally scored. This was verified when characteristic AWC morphology and gonadal 

development were studied closely, and we observed that ethanol treated worms had 1 

AWC ON (data not shown). This suggests that ethanol is not causing a change in AWC 

cell fate decisions. 

Discussion 

 Recent work in our lab studying ethanol’s physiological effects has suggested 

that lipids are an important factor in the development of tolerance. Triacylglycerol levels 

have emerged as a contributor to AFT and initial sensitivity to ethanol (Bettinger et al., 

2012). Previous work identified the SLO-1/BK channel as an ethanol target which acts 

to hyperpolarize neurons and depress neuronal excitation (Davies et al., 2003). It was 

also shown that lipid bilayer thickness can modulate basal activity and ethanol activation 

of the BK channel (Treistman and Martin, 2009; Yuan et al., 2007, 2008). Additionally it 

was shown that neuronal excitability effects AWC ON expression (Troemel et al., 1999). 

Taken together, based on previous findings, our proposed model was that lipids play an 

important role during ethanol exposure to modulate basal activity by the BK channel in 
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AWC chemosensory neurons. Our hypothesis was that modulation of the lipid 

membrane composition changes the activity of BK channels. An increase in lipids, such 

as TAGs, would create larger or more lipid microdomains which sequesters more BK 

channels. The sequestered BK channels are not able to be activated by ethanol and 

would not hyperpolarize AWC neurons thereby increasing neuronal excitability and 

favoring an AWC OFF phenotype. 

We predicted that ethanol exposure during embryogenesis would activate BK 

channels that would decrease neuronal excitability and alter AWC cell fate to 2 AWC 

ON. This would subsequently cause a change in chemotaxis behavior similar to mutants 

with 2 AWC ON, such as slo-1(ky389gf), who are not able to odor discriminate. Based 

on preliminary scoring data, we initially thought that ethanol was inducing a cell fate 

change in AWC neurons to 2 AWC ON, which could then cause a functional change in 

chemotaxis behavior. From baseline chemotaxis and odor discrimination assays, we 

found that kyIs140;slo-1(ky389gf) animals are not able to chemotax towards 

benzaldehyde in the presence of butanone. However, the lips-7 mutation was able to 

suppress this phenotype and kyIs140;slo-1(ky389gf);lips-7 mutants were able to 

strongly chemotax toward benzaldehyde in the presence of butanone. lips-7 is a lipase 

that has been shown to regulate TAG levels and alters tolerance to ethanol (Bettinger et 

al., 2012; Chen et al., 2009). So we tested if ethanol treated animals, who presumably 

have an altered AWC phenotype, show changes in their chemotaxis behavior. 
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When kyIs140 animals were exposed to ethanol during embryogenesis their 

chemotaxis behaviors did not change from baseline behaviors. Both untreated and 600 

mM ethanol treated kyIs140 animals were able to chemotax toward benzaldehyde in the 

absence and presence of butanone. These results did not correlate with our working 

model or hypothesis. We thought that it was possible that animals exposed to ethanol 

during embryogenesis were developmentally delayed and subsequently, we were 

scoring animals during the wrong stage of larval development. The difference in 

developmental timing between untreated and ethanol treated animals could have 

altered scoring results. From our preliminary scoring results of ethanol causing an 

apparent change in a second AWC ON neuron and the results of no changes in 

chemotaxis behavior in ethanol treated animals, we thought that chronic ethanol 

exposure would alter AWC asymmetry. 

After chronic ethanol exposure, we found that AWC cell fate was not changed in 

kyIs140 animals but was altered in ctbp-1 mutants. About half of ethanol treated ctbp-1 

mutants had 0 AWC ON while the other half had 1 AWC ON. ctbp-1 is a transcriptional 

co-repressor that has been shown to increase lifespan in C. elegans (Chen et al., 2009). 

Importantly, when CTBP-1 is inhibited, LIPS-7 is over expressed leading to a decrease 

in TAG and suggested that ctbp-1 is upstream of lips-7. Therefore, ctbp-1 mutants 

provide a sensitized background in which to test AWC cell fate changes. Our results 

indicate that chronic ethanol exposure may cause an increase in neuronal excitability 

and favor an AWC OFF phenotype. Ethanol could be acting to disrupt the cross 
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signaling between AWC neurons thereby causing both neurons to become AWC OFF. 

A study by Troemel et al. showed that the basal state of AWC neurons is OFF and 

when signaling is disrupted neurons become AWC OFF.  

To next address if developmental timing of scoring animals affected the results, 

we conducted an extensive time course assay with kyIs140 animals treated with a 

range of ethanol concentrations from 0 mM to 600 mM ethanol. All previous scoring of 

animals was done during the L4 stage and chemotaxis and odor discrimination assays 

were done on first day adults. From our time course ethanol experiment we found that 

as animals age, the number of cells expressing GFP decreases from 9 cells during the 

L1 stage to eventually 1 in young adult animals. We also found that the majority of 

animals expressed 1 AWC ON during the L4 stage. Consequently, we then went back 

and reassessed our scoring and found that we were scoring the cells that were 

expressing GFP and not AWC ON neurons. We used gonadal development to indicate 

the specific L4 larval stage and closely observed AWC characteristic morphology. We 

found that ethanol did not affect AWC cell fate decisions but instead ethanol was 

affecting the developmental rates of animals. This shows that ethanol exposure during 

embryogenesis causes developmental delays, which are not apparent in chemotaxis 

behavior.  

While we found that ethanol was not able to transform AWC cell fate in C. 

elegans, there could be a protective mechanism during maturation that adjusts neuronal 

excitability. Animals might be able to utilize lipids both in their diet and by ramping up 
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their own de novo synthesis of fatty acids. This increase in lipids would then protect 

their neurons from ethanol damage. Furthermore, they might be exploiting large lipids 

such as sphingomyelin and cholesterol to increase the thickness of their cell 

membranes thereby sequestering more SLO-1/BK channels and protecting their AWC 

neurons.  

Future Experiments 

To test if worms have a protective mechanism against alcohol damage during 

larval development by utilizing their lipids, lipid levels could be measured during various 

larval stages. It has been shown that TAG levels are increased in animals where lips-7 

is inactivated by RNA interference whereas ctbp-1 mutants have increased lips-7, a 

lipase that negatively regulates TAG levels, and decreased TAG levels (Chen et al., 

2009). So we could quantify TAGS levels in various larval stages of ethanol treated 

animals along with lips-7 mutants as a positive control and ctbp-1 mutants as a negative 

control.  TAG levels could be quantified using a colorimetric glycerol based assay. This 

assay measures the concentration of TAGs by the absorbance of a blue pigment and 

takes into account free glycerol levels. Previously this experiment has been performed 

but the results were confounded by sample size and low absorbance outputs. 

More specifically, gas chromatography-mass spectroscopy (GC-MS) can be used to find 

candidate fatty acids important in the protective role of lipids from ethanol. Gas 

chromatography-mass spectrometry (GC-MS) has become the superior method for 

analyzing complex mixtures of fatty acids. GC-MS first separates volatile constituents in 
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a mixture and then analyzes and characterizes each fatty acid. We are currently 

investigating methods to extract lipids from animals for samples for GC-MS. 
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Figure 6. slo-1 gain-of-function mutants are deficient in chemotaxis, and lips-7 
can suppress this defect 

N2, kyIs140, kyIs140;lips-7, kyIs140;slo-1(ky389gf), kyIs140;slo-1(ky389gf);lips-7, 
kyIs140;slo-1(eg142lf), and kyIs140;dgk-1(nu62) all chemotax towards benzaldehyde 
after 1 and 2 hours. Mutant kyIs140;slo-1(ky389gf) does not significantly chemotax 
toward benzaldehyde after 1 and 2 hours relative to kyIs140. 
 
One-way ANOVA 
p-value<0.05  
post-hoc – Bonferroni 
*relative to kyIs140 within time point 
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Figure 7. slo-1 gain-of-function defects in odor discrimination are suppressed by 
lips-7  

N2 and kyIs140 animals strongly chemotax toward benzaldehyde in the absence and 
presence of butanone. kyIs140;slo-1(ky389gf) mutants are defective in chemotaxis 
toward benzaldehyde in the presence of butanone but lips-7 suppresses this phenotype.  

Two-way ANOVA 
p-value<0.05  
post-hoc – Bonferroni 
*relative to kyIs140 within dose 
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Figure 8. Ethanol treated animals do not show defects in chemotaxis 

kyIs140 animals treated with 0 mM and 600 mM ethanol were able to chemotax toward 
benzaldehyde. There were no statistically significant differences in their chemotaxis 
indices. 
 
One-way ANOVA 
p-value<0.05 
post-hoc – Bonferroni 
*relative to kyIs140 within time point 
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Figure 9. Ethanol treated animals do not show defects in odor discrimination 

kyIs140 animals exposed to 600 mM ethanol in the presence of butanone were able to 
chemotax toward benzaldehyde. There were no statistically significant differences in 
chemotaxis indices between untreated and ethanol treated animals in the absence or 
presence of butanone.  
 
Two-way ANOVA 
p-value<0.05 
post hoc – Bonferroni 
*relative to kyIs140 within dose 
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Figure 10. Ethanol treated dgk-1(nu62) mutants do not show defects in odor 
discrimination 

dgk-1(nu62) animals exposed to 500 mM ethanol in the presence of butanone were 
able to chemotax toward benzaldehyde. There were no differences in chemotaxis 
indices between untreated and ethanol treated dgk-1(nu62) animals in the absence or 
presence of butanone.  
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Figure 11. Chronic ethanol exposure does not alter str-2::gfp expression in 
neurons in kyIs140 animals 

kyIs140 animals exposed to 0 mM, 500 mM, 600 mM, and 700 mM had 1 AWC ON. 
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Figure 12. Chronic ethanol exposure alters str-2::gfp expression in neurons in 
ctbp-1 mutants 

ctbp-1 mutants exposed to 0 mM, 500 mM, and 600 mM of ethanol had 1 AWC ON. 
About half of the ctbp-1 mutants exposed to 700 mM had 0 or 1 AWC ON. 
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Figure 13. Cells expressing GFP in L1 worms exposed to increasing 
concentrations of ethanol 

kyIs140 L1 animals raised on 0 mM, 400 mM, 500 mM, and 600 mM ethanol had 2 – 9 
cells expressing GFP. Most animals had 3 – 7 cells expressing GFP.  
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Figure 14. Cells expressing GFP in L2 worms exposed to increasing 
concentrations of ethanol 

kyIs140 L2 animals raised on 0 mM, 400 mM, 500 mM, and 600 mM ethanol had 2 – 6 
cells expressing GFP. Most worms had 2 – 4 cells expressing GFP. 
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Figure 15. Cells expressing GFP in L3 worms exposed to increasing 
concentrations of ethanol 

kyIs140 L3 animals raised on 0 mM, 400 mM, 500 mM, and 600 mM ethanol had 1 – 4 
cells expressing GFP. Most animals had 2 -3 cells expressing GFP. 
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Figure 16. Cells expressing GFP in L4 worms exposed to increasing 
concentrations of ethanol 

kyIs140 L4 animals raised on 0 mM, 400 mM, 500 mM, and 600 mM ethanol had 0 – 3 
cells expressing GFP. Most animals had 1 or 2 cells expressing GFP. 
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Figure 17. Cells expressing GFP in young adult worms exposed to increasing 
concentrations of ethanol 

kyIs140 young adult animals raised on 0 mM, 400 mM, 500 , and 600 mM ethanol had 1 
or 2 cells expressing GFP. Most young adult animals had 1 cell expressing GFP.  
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Table 1. DiI staining of kyIs140, kyIs140;slo-1(eg142), and kyIs140;slo-1(ky389) 
shows 0, 1, and 2 AWC ON 

All kyIs140 animals have 1 AWC ON. Likewise, almost all kyIs140;slo-1(eg142) mutants 
have 1 AWC ON. kyIs140;slo-1(ky389) mutants have 2 AWC ON. 
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Strains AWCON 

(Percentage) 

0 1 2 

 

kyIs140 

 

 

0 (0%) 

 

100 (100%) 

 

0 (0%) 

 

kyIs140; slo-1(eg142) 

 

 

4 (4%) 

 

96 (96%) 

 

0 (0%) 

 

kyIs140;slo-1(ky389) 

 

 

0 (0%) 

 

1 (1%) 

 

99(99%) 
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Table 2. DiI staining of ethanol treated animals have changes in str-2::gfp 
expression in neurons 

All untreated kyIs140 animals have 1 AWC ON. About half of kyIs140 animals treated 
with 600 mM ethanol have 1 or an apparent second AWC ON. 
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Strains Ethanol 

Concentration  

(mM) 

AWCON 

(Percentage) 

0 1 2 

kyIs140 0 0 (0%) 100 (100%) 0 (0%) 

600 0 (0%) 58 (58%) 42 (42%) 
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